Idaho State University – Department of Physics PHYS 499 / PHYS 630 Accelerator Physics — Spring 2009

Homework 8 (due Apr 8)

Consider a beam of emittance $\varepsilon = 10 \ \mu m$ propagating in a periodic FODO structure consisting of thin lenses of focal lengths $\pm F = \pm 8$ m separated by drifts of length L = 10 m.

- 1. Write the transfer matrix M for one FODO period and calculate the phase advance μ . Is the motion stable?
- 2. Compare the transfer matrix M expressed in terms of F and L with the one expressed in terms of the Courant-Snyder parameters to calculate the values of α , β , and γ at two locations: (1) just before the focusing lenses and (2) just before the defocusing lenses.
- 3. Use the propagation matrix for the Courant-Snyder parameters to produce a plot of $\alpha(s)$, $\beta(s)$, and $\gamma(s)$ in the interval 0 m < s < 40 m.
- 4. On a separate plot, draw the beam envelope $\sqrt{\varepsilon \beta(s)}$ for 0 m < s < 40 m.